Phase competition in trisected superconducting dome.

نویسندگان

  • I M Vishik
  • M Hashimoto
  • Rui-Hua He
  • Wei-Sheng Lee
  • Felix Schmitt
  • Donghui Lu
  • R G Moore
  • C Zhang
  • W Meevasana
  • T Sasagawa
  • S Uchida
  • Kazuhiro Fujita
  • S Ishida
  • M Ishikado
  • Yoshiyuki Yoshida
  • Hiroshi Eisaki
  • Zahid Hussain
  • Thomas P Devereaux
  • Zhi-Xun Shen
چکیده

A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi(2)Sr(2)CaCu(2)O(8+δ), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T(c) and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermi-surface-free superconductivity in underdoped (Bi,Pb)(Sr,La)2CuO6+δ (Bi2201)

Fermi-surface-free superconductivity arises when the superconducting order pulls down spectral weight from a band that is completely above the Fermi energy in the normal state. We show that this can arise in hole-doped cuprates when a competing order causes a reconstruction of the Fermi surface. The change in Fermi surface topology is accompanied by a characteristic rise in the spectral weight....

متن کامل

Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3

The phase diagram of BaPb(1-x)Bi(x)O3 exhibits a superconducting dome in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high-resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of ...

متن کامل

Competing magnetic orders in the superconducting state of heavy-fermion CeRhIn5.

Applied pressure drives the heavy-fermion antiferromagnet CeRhIn5 toward a quantum critical point that becomes hidden by a dome of unconventional superconductivity. Magnetic fields suppress this superconducting dome, unveiling the quantum phase transition of local character. Here, we show that [Formula: see text] magnetic substitution at the Ce site in CeRhIn5, either by Nd or Gd, induces a zer...

متن کامل

Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films.

We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-T_{c} dome, whereas in the heavily electron-doped higher-T_{c} dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper...

متن کامل

Heat-capacity measurements of energy-gap nodes of the heavy-fermion superconductor CeIrIn5 deep inside the pressure-dependent dome structure of its superconducting phase diagram.

We use heat-capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn(5) at pressures to 2.05 GPa, deep inside its superconducting dome. A fourfold oscillation in the heat capacity at 0.3 K is observed for all pressures, but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle-dependent specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 45  شماره 

صفحات  -

تاریخ انتشار 2012